1. Peroutka SJ, McCarthy BG. Sumatriptan (GR 43175) interacts selectively with 5-HT1B and 5-HT1D binding sites. Eur J Pharmacol. 1989;163:133–6.
2. Prendiville S, Gale K. Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia. 1993;34:381–4.
3. Lin WH, Huang HP, Lin MX, et al. Seizure-induced 5-HT release and chronic impairment of serotonergic function in rats. Neurosci Lett. 2013;534:1–6.
4. Gooshe M, Ghasemi K, Rohani MM, et al. Biphasic effect of sumatriptan on PTZ-induced seizures in mice: modulation by 5-HT1B/D receptors and NOS/NO pathway. Eur J Pharmacol. 2018;824:140–7.
5. Khalilzadeh M, Panahi G, Rashidian A, et al. The protective effects of sumatriptan on vincristine - induced peripheral neuropathy in a rat model. Neurotoxicology. 2018;67:279–86.
6. Goadsby PJ. The pharmacology of headache. Prog Neurobiol. 2000;62:509–25.
7. Snyder S. The opiates, opioid peptides (endorphins), and the opiate receptor. Tex Med. 1979;75:41–5.
8. Homayoun H, Khavandgar S, Dehpour AR. The role of alpha2-adrenoceptors in the modulatory effects of morphine on seizure susceptibility in mice. Epilepsia. 2002;43:797–804.
9. Lauretti GR, Ahmad I, Pleuvry BJ. The activity of opioid analgesics in seizure models utilizing N-methyl-DL-aspartic acid, kainic acid, bicuculline and pentylenetetrazole. Neuropharmacology. 1994;33:155–60.
10. Homayoun H, Khavandgar S, Namiranian K, Gaskari SA, Dehpour AR. The role of nitric oxide in anticonvulsant and proconvulsant effects of morphine in mice. Epilepsy Res. 2002;48:33–41.
12. Bahramnjead E, Kazemi Roodsari S, Rahimi N, Etemadi P, Aghaei I, Dehpour AR. Effects of modafinil on clonic seizure threshold induced by pentylenetetrazole in mice: involvement of glutamate, nitric oxide, GABA, and serotonin pathways. Neurochem Res. 2018;43:2025–37.
13. Kazemi Roodsari S, Bahramnejad E, Rahimi N, Aghaei I, Dehpour AR. Methadone’s effects on pentylenetetrazole-induced seizure threshold in mice: NMDA/opioid receptors and nitric oxide signaling. Ann N Y Acad Sci. 2019;1449:25–35.
14. Tsuda M, Suzuki T, Misawa M. Aggravation of DMCM-induced seizure by nitric oxide synthase inhibitors in mice. Life Sci. 1997;60:PL339–43.
17. Swinyard EA, Kupferberg HJ. Antiepileptic drugs: detection, quantification, and evaluation. Fed Proc. 1985;44:2629–33.
18. Löscher W, Hönack D, Fassbender CP, Nolting B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Res. 1991;8:171–89.
19. Gale K. Subcortical structures and pathways involved in convulsive seizure generation. J Clin Neurophysiol. 1992;9:264–77.
20. Kaputlu I, Uzbay T. L-NAME inhibits pentylenetetrazole and strychnine-induced seizures in mice. Brain Res. 1997;753:98–101.
21. Chavan VR, Mudium R, Sayana SB. Abolition of seizure provoking effect of sumatriptan by fluoxetine in pentylenetetrazol induced seizures in rats. Asian J Pharm Clin Res. 2014;7:107–9.
22. Jand A, Palizvan MR. Sumatriptan, an antimigraine drug, inhibits pentylenetetrazol- induced seizures in NMRI mice. Drug Res (Stuttg). 2017;67:179–82.
23. Johnson DE, Rollema H, Schmidt AW, McHarg AD. Serotonergic effects and extracellular brain levels of eletriptan, zolmitriptan and sumatriptan in rat brain. Eur J Pharmacol. 2001;425:203–10.
24. Vercueil L. Migralepsy, what it is and what it is not. Rev Neurol (Paris). 2022;178:654–8.
25. Foote F, Gale K. Proconvulsant effect of morphine on seizures induced by pentylenetetrazol in the rat. Eur J Pharmacol. 1984;105:179–84.
26. Kuriyama K, Yoneda Y. Morphine induced alterations of gamma-aminobutyric acid and taurine contents and L-glutamate decarboxylase activity in rat spinal cord and thalamus: possible correlates with analgesic action of morphine. Brain Res. 1978;148:163–79.
27. Wikler A, Altschul S. Effects of methadone and morphine of the electroencephalogram of the dog. J Pharmacol Exp Ther. 1950;98:437–46.
28. Shafaroodi H, Asadi S, Sadeghipour H, et al. Role of ATP-sensitive potassium channels in the biphasic effects of morphine on pentylenetetrazole- induced seizure threshold in mice. Epilepsy Res. 2007;75:63–9.
29. Khavandgar S, Homayoun H, Dehpour AR. Mediation of nitric oxide in inhibitory effect of morphine against electroshock-induced convulsions in mice. Pharmacol Biochem Behav. 2003;74:795–801.
30. Pavone F, Castellano C, Oliverio A. Strain-dependent effects of shock-induced release of opioids: dissociation between analgesia and behavioral seizures. Brain Res. 1986;366:326–8.
31. Lutfy K, Woodward RM, Keana JF, Weber E. Inhibition of clonic seizure- like excitatory effects induced by intrathecal morphine using two NMDA receptor antagonists: MK-801 and ACEA-1011. Eur J Pharmacol. 1994;252:261–6.
32. Crain SM, Shen KF. Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons. Trends Pharmacol Sci. 1990;11:77–81.
33. Childers SR. Opioid receptor-coupled second messenger systems. Life Sci. 1991;48:1991–2003.
35. Ghasemi M, Shafaroodi H, Nazarbeiki S, et al. Inhibition of NMDA receptor/ NO signaling blocked tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Res. 2010;91:39–48.
36. Bahremand A, Ziai P, Khodadad TK, et al. Agmatine enhances the anti-convulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: involvement of L-arginine/nitric oxide pathway. Epilepsy Behav. 2010;18:186–92.
37. Pourshadi N, Rahimi N, Ghasemi M, Faghir-Ghanesefat H, Sharifzadeh M, Dehpour AR. Anticonvulsant effects of thalidomide on pentylenetetrazole-induced seizure in mice: a role for opioidergic and nitrergic transmissions. Epilepsy Res. 2020;164:106362
38. Kirkby RD, Carroll DM, Grossman AB, Subramaniam S. Factors determining proconvulsant and anticonvulsant effects of inhibitors of nitric oxide synthase in rodents. Epilepsy Res. 1996;24:91–100.
39. Ikeda Y, Jimbo H, Shimazu M, Satoh K. Sumatriptan scavenges superoxide, hydroxyl, and nitric oxide radicals: in vitro electron spin resonance study. Headache. 2002;42:888–92.
40. Suwattanasophon C, Phansuwan-Pujito P, Srikiatkhachorn A. 5-HT(1B/1D) serotonin receptor agonist attenuates nitroglycerin-evoked nitric oxide synthase expression in trigeminal pathway. Cephalalgia. 2003;23:825–32.
41. Eslami F, Rahimi N, Ostovaneh A, et al. Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT1B/D receptors in rats: a pharmacological-based evidence. Fundam Clin Pharmacol. 2021;35:131–40.
42. Payandemehr B, Rahimian R, Bahremand A, et al. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol Behav. 2013;118:52–7.
43. Meskinimood S, Rahimi N, Faghir-Ghanesefat H, Gholami M, Sharifzadeh M, Dehpour AR. Modulatory effect of opioid ligands on status epilepticus and the role of nitric oxide pathway. Epilepsy Behav. 2019;101:106563
44. Frenk H. Pro- and anticonvulsant actions of morphine and the endogenous opioids: involvement and interactions of multiple opiate and non-opiate systems. Brain Res. 1983;287:197–210.
45. Jayakumar AR, Sujatha R, Paul V, Asokan C, Govindasamy S, Jayakumar R. Role of nitric oxide on GABA, glutamic acid, activities of GABA-T and GAD in rat brain cerebral cortex. Brain Res. 1999;837:229–35.
46. Paul V, Jayakumar AR. A role of nitric oxide as an inhibitor of gamma-aminobutyric acid transaminase in rat brain. Brain Res Bull. 2000;51:43–6.